A kinematic model of Kármán gaiting in rainbow trout.
نویسندگان
چکیده
A mechanistic understanding of how fishes swim in unsteady flows is challenging despite its prevalence in nature. Previous kinematic studies of fish Kármán gaiting in a vortex street behind a cylinder only report time-averaged measurements, precluding our ability to formally describe motions on a cycle-by-cycle basis. Here we present the first analytical model that describes the swimming kinematics of Kármán gaiting trout with 70-90% accuracy. We found that body bending kinematics can be modelled with a travelling wave equation, which has also been shown to accurately model free-stream swimming kinematics. However, free-stream swimming and Kármán gaiting are separated in the parameter space; the amplitude, wavelength and frequency values of the traveling wave equation are substantially different for each behavior. During Kármán gaiting, the wave is initiated at the body center, which is 0.2L (where L is total body length) further down the body compared with the initiation point in free-stream swimming. The wave travels with a constant speed, which is higher than the nominal flow speed just as in free-stream swimming. In addition to undulation, we observed that Kármán gaiting fish also exhibit substantial lateral translations and body rotations, which can constitute up to 75% of the behavior. These motions are periodic and their frequencies also match the vortex shedding frequency. There is an inverse correlation between head angle and body angle: when the body rotates in one direction, the head of the fish turns into the opposite direction. Our kinematic model mathematically describes how fish swim in vortical flows in real time and provides a platform to better understand the effects of flow variations as well as the contribution of muscle activity during corrective motions.
منابع مشابه
The effect of flow speed and body size on Kármán gait kinematics in rainbow trout.
We have little understanding of how fish hold station in unsteady flows. Here, we investigated the effect of flow speed and body size on the kinematics of rainbow trout Kármán gaiting behind a 5 cm diameter cylinder. We established a set of criteria revealing that not all fish positioned in a vortex street are Kármán gaiting. By far the highest probability of Kármán gaiting occurred at intermed...
متن کاملRainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds.
Measuring the rate of consumption of oxygen ( ) during swimming reveals the energetics of fish locomotion. We show that rainbow trout have substantially different oxygen requirements for station holding depending on which hydrodynamic microhabitats they choose to occupy around a cylinder. We used intermittent flow respirometry to show that an energetics hierarchy, whereby certain behaviors are ...
متن کاملThe role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
The ability to detect water flow using the hair cells of the lateral line system is a unique feature found in anamniotic aquatic vertebrates. Fishes use their lateral line to locate prey, escape from predators and form cohesive schooling patterns. Despite the prevalence of complex flows in nature, almost nothing is known about the function of the lateral line and its relationship to other senso...
متن کاملNeuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
Approximating the complexity of natural locomotor conditions provides insight into the diversity of mechanisms that enable animals to successfully navigate through their environment. When exposed to vortices shed from a cylinder, fishes hold station by adopting a mode of locomotion called the Kármán gait, whereby the body of the fish displays large, lateral oscillations and the tail-beat freque...
متن کاملThe Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
Most fishes commonly experience unsteady flows and hydrodynamic perturbations during their lifetime. In this study, we provide evidence that rainbow trout Oncorhynchus mykiss voluntarily alter their body kinematics when interacting with vortices present in the environment that are not self-generated. To demonstrate this, we measured axial swimming kinematics in response to changes in known hydr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 24 شماره
صفحات -
تاریخ انتشار 2013